viernes, 29 de mayo de 2015

FUNCIONES DE BESSEL

Funciones de Bessel

Las funciones de Bessel forman una clase de función de las denominadasfunciones especiales que se encuentran en la solución de determinados problemas físicos. Dan la solución a una ecuación diferencial muy importante, la ecuación de Bessel:
Las soluciones para esta ecuación están en la forma de series infinitas, que se llaman funciones de Bessel de primera especie. La expresión para la suma es
Los valores para las funciones de Bessel se pueden encontrar en la mayoría de las colecciones de tablas matemáticas. Las funciones de Bessel se encuentran en situaciones físicas donde hay simetría cilíndrica. Esto ocurre en problemas relacionados con los campos eléctricos, vibraciones, calor por conducción, la difracción óptica y otros.
Otra forma llamada función de Bessel esférica, aparece en una aplicación específica de mecánica cuántica, el pozo de potencial esférico.

Funciones de Bessel Esféricas

Una clase específica de las funciones especiales llamadas funciones esféricas de Bessel se plantea en los problemas de simetría esférica, como el pozo de potencial esférico en la mecánica cuántica. Las tres primeras formas son
Las formas de ordenes superiores, se pueden generar a partir de la primera forma mediante la relación
A veces es útil contar con los casos límites de estas funciones para distancias muy grandes o muy pequeñas:

SERIES NUMERICAS

Una sucesión es un conjunto de cosas (normalmente números) una detrás de otra, en un cierto orden.


Finita o infinita

Si la sucesión sigue para siempre, es una sucesión infinita,
si no es una sucesión finita

Ejemplos

{1, 2, 3, 4 ,...} es una sucesión muy simple (y es una sucesión infinita)
{20, 25, 30, 35, ...} también es una sucesión infinita
{1, 3, 5, 7} es la sucesión de los 4 primeros números impares (y es una sucesión infinita)
{4, 3, 2, 1} va de 4 a 1 hacia atrás
{1, 2, 4, 8, 16, 32, ...} es una sucesión infinita donde vamos doblando cada término
{a, b, c, d, e} es la sucesión de las 5 primeras letras en order alfabético
{a, l, f, r, e, d, o} es la sucesión de las letras en el nombre "alfredo"
{0, 1, 0, 1, 0, 1, ...} es la sucesión que alterna 0s y 1s (sí, siguen un orden, en este caso un orden alternativo)

En orden

Cuando decimos que los términos están "en orden", ¡nosotros somos los que decimos qué orden! Podría ser adelante, atrás... o alternando... ¡o el que quieras!
Una sucesión es muy parecida a un conjunto, pero con los términos en orden (y el mismo valor sí puede aparecer muchas veces).
Ejemplo: {0, 1, 0, 1, 0, 1, ...} es la sucesión que alterna 0s y 1s. El conjunto sería sólo {0,1}

La regla

Una sucesión sigue una regla que te dice cómo calcular el valor de cada término.
Ejemplo: la sucesión {3, 5, 7, 9, ...} empieza por 3 y salta 2 cada vez:
{3, 5, 7, 9, ...}

 

¡Pero la regla debería ser una fórmula!

Decir que "empieza por 3 y salta 2 cada vez" no nos dice cómo se calcula el:
  • 10º término,
  • 100º término, o
  • n-ésimo término (donde n puede ser cualquier número positivo que queramos).
Así que queremos una fórmula con "n" dentro (donde n será la posición que tiene el término).

Entonces, ¿cuál sería la regla para {3, 5, 7, 9, ...}?

Primero, vemos que la sucesión sube 2 cada vez, así que podemos adivinar que la regla va a ser "2 × n". Vamos a verlo:
Probamos la regla: 2n
nTérminoPrueba
132n = 2×1 = 2
252n = 2×2 = 4
372n = 2×3 = 6
Esto casi funciona... pero la regla da todo el tiempo valores 1 unidad menos de lo que debería, así que vamos a cambiarla un poco:
Probamos la regla: 2n+1
nTérminoRegla
132n+1 = 2×1 + 1 = 3
252n+1 = 2×+ 1 = 5
372n+1 = 2×3 + 1 = 7
¡Funciona!
Así que en vez de decir "empieza por 3 y salta 2 cada vez" escribimos la regla como
La regla para {3, 5, 7, 9, ...} es: 2n+1
Ahora, por ejemplo, podemos calcular el término 100º: 2 × 100 + 1 = 201

Notación

Para que sea más fácil escribir las reglas, normalmente lo hacemos así:
 

Posición del término

Es normal usar xn para los términos:
  • xn es el término
  • n es la posición de ese término
 Así que para hablar del "quinto término" sólo tienes que escribir: x5
Entonces podemos escribir la regla para {3, 5, 7, 9, ...} en forma de ecuación, así:
xn = 2n+1
Ahora, si queremos calcular el 10º término, podemos escribir:
x10 = 2n+1 = 2×10+1 = 21
¿Puedes calcular el 50º término? ¿Y el 500º?
Ahora veamos algunas sucesiones especiales y sus reglas:

Tipos de sucesiones

Sucesiones aritméticas

El ejemplo que acabamos de usar, {3,5,7,9,...}, es una sucesión aritmética (o progresión aritmética), porquela diferencia entre un término y el siguiente es una constante.

Ejemplos

1, 4, 7, 10, 13, 16, 19, 22, 25, ...
Esta sucesión tiene una diferencia de 3 entre cada dos términos.
La regla es xn = 3n-2


3, 8, 13, 18, 23, 28, 33, 38, ...
Esta sucesión tiene una diferencia de 5 entre cada dos términos.
La regla es xn = 5n-2

Sucesiones geométricas

En una sucesión geométrica cada término se calcula multiplicando el anterior por un número fijo.

Ejemplos:

2, 4, 8, 16, 32, 64, 128, 256, ...
Esta sucesión tiene un factor 2 entre cada dos términos.
La regla es xn = 2n
3, 9, 27, 81, 243, 729, 2187, ...
Esta sucesión tiene un factor 3 entre cada dos términos.
La regla es xn = 3n

4, 2, 1, 0.5, 0.25, ...
Esta sucesión tiene un factor 0.5 (un medio) entre cada dos términos.
La regla es xn = 4 × 2-n

Sucesiones especiales

Números triangulares

1, 3, 6, 10, 15, 21, 28, 36, 45, ...
Esta sucesión se genera a partir de una pauta de puntos en un triángulo.
Añadiendo otra fila de puntos y contando el total encontramos el siguiente número de la sucesión.
números triangulares
Pero es más fácil usar la regla
xn = n(n+1)/2
Ejemplo:
  • El quinto número triangular es x5 = 5(5+1)/2 = 15,
  • y el sexto es x6 = 6(6+1)/2 = 21

Números cuadrados

1, 4, 9, 16, 25, 36, 49, 64, 81, ...
El siguiente número se calcula elevando al cuadrado su posición. 
La regla es xn = n2

Números cúbicos

1, 8, 27, 64, 125, 216, 343, 512, 729, ...
El siguiente número se calcula elevando al cubo su posición. 
La regla es xn = n3

Números de Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
El siguiente número se calcula sumando los dos que están antes de él.
El 2 se calcula sumando los dos delante de él (1+1)
El 21 se calcula sumando los dos delante de él (8+13)
La regla es xn = xn-1 + xn-2

Esta regla es interesante porque depende de los valores de los términos anteriores.
Por ejemplo el 6º término se calcularía así:
x6 = x6-1 + x6-2 = x5 + x4 = 5 + 3 = 8

Series

"Sucesiones" y "series" pueden parecer la misma cosa... pero en realidad una serie es la suma de una sucesión.
Sucesión: {1,2,3,4}
Serie: 1+2+3+4 = 10
Las series se suelen escribir con el símbolo Σ que significa "súmalos todos":

suma de 1 a 4Esto significa "suma de 1 a 4" = 10
  
suma 2n+1Esto significa "suma los cuatro primeros términos de la sucesión 2n+1"

Que son los cuatro primeros términos de nuestro ejemplo {3,5,7,9,...} = 3+5+7+9 = 24

SUCESIONES NUMERICAS

Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro.
a1, a2, a3 ,..., an
3, 6, 9,..., 3n
Los números a1, a2 , a3 , ...; se llaman términos de la sucesión.
El subíndice indica el lugar que el término ocupa en la sucesión.
El término general es aes un criterio que nos permite determinar cualquier término de la sucesión.

Determinación de una sucesión

Por el término general

an= 2n-1
a1= 2 ·1 - 1 = 1
a2= 2 ·2 - 1 = 3
a3= 2 ·3 - 1 = 5
a4= 2 ·4 - 1 = 7
1, 3, 5, 7,..., 2n-1
No todas las sucesiones tienen término general. Por ejemplo, la sucesión de los números primos:
2, 3, 5, 7, 11, 13, 17, 19, 23,...

Por una ley de recurrencia

Los términos se obtienen operando con los anteriores.
Escribir una sucesión cuyo primer término es 2, sabiendo que cada término es el cuadrado del anterior.
2, 4, 16, ...

Sucesión de Fibonacci:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ...
Los dos primeros términos son unos y los demás se obtienen sumando los dos términos anteriores.
Sucesión de Fibonacci

viernes, 8 de mayo de 2015

CALCULO DE CENTROIDES

Cálculo de los centroides

En Matemáticas, los centroides de una figura bidimensional se refieren al punto en el cual todas las líneas de la figura correspondiente se intersectan unas con otras de tal manera que dividen la figura en dos partes iguales en los momentos equivalentes.
Asimismo, la definición puede ser ampliada y se vuelve aplicable un objeto n-dimensional.
Si se establece físicamente, un centroide se refiere al centro del objeto geométrico.
Por lo tanto, al calcular el centroide de una figura en particular, sólo el área de la figura geométrica se toma en cuenta. Por este motivo, el centroide también se denomina como centro geométrico.
El cálculo del centroide es una de las aplicaciones principales de las integrales.
Una propiedad importante que forma la base del cálculo del centroide es que el centroide de un objeto convexoyace dentro del objeto, mientras que un objeto no convexo puede tener su centroide situado exterior a la figura.
Existen muchos métodos disponibles para encontrar el centroide de una figura particular, incluyendo el método de la plomada, el método de descomposición geométrica y el método de integración. Entre todos, el método de integración es el método más fácil y ampliamente utilizado para localizar el centroide de un objeto o una figura.
Para encontrar el centroide de figuras complejas la idea básica consiste en dividir la figura en rectángulos pequeños y entonces calcular la coordenadas x e y del centroide mediantecalcular simplemente los momentos correspondientes sobre las coordenadas x e y.
Supongamos que el ancho del rectángulo, el cual está dibujado dentro de la curva de arriba, es Δx y la altura correspondiente es y2 − y1.
Entonces el momento total y el área de la figura sobre el eje x viene a ser x (y2 – y1) dx y (y2 – y1) dx, respectivamente.
Por lo tanto, la coordenada x del centroide viene a ser = Momento total
        Área total     
Del mismo modo, calculando la coordenada y del centroide, la fórmula puede ser modificada a
Una fuerte captación de la idea se puede hacer si estos se aplican de forma práctica. Un ejemplo puede ayudar en gran manera a apropiarse del concepto en cuestión.
Suponga que el centroide de la curva limitada por el eje x, y = x3, x = 2 será encontrado.
Aplicando la fórmula, . Aquí a = 0, b = 2, y1 = 0 y y2 = x3
 x (x3 - 0) dx 
  (x3 - 0) dx 
= x4 dx
 x3 dx
= [x5 / 5]02
    [x4 / 4]02
= 32 / 5
   16 / 4
= 1.6
Del mismo modo, buscando la coordenada y
Aplicando la fórmula, 
Aquí x2 = 2, x1 = y 1/3, c= 0 y d =8. Ahora, obtenemos
 =  y (2 – y1/3)dy
 (2 – y1/3) dy
= (2y – y4/3 ) dy
  (2 – y1/3) dy
= [y2 – (3y7/3 / 7)]08 [2y – (3y4/3 / 4)]08
= 16 – 3/7(32)
= 2.29
Por tanto, el centroide de la figura es (1.6, 2.29)
Una característica muy interesante del centroide es que el centroide de un objetobidimensionales igual al centro de masa de ese objeto es por esto que podemos afirmar que el centroide de un objeto bidimensional es la posición de la media ponderada al centro del objeto dado.
- See more at: http://mitecnologico.com/igestion/Main/CalculoDeCentroides#sthash.iOXi6AHZ.dpuf

CALCULO DE VOLUMENES SOLIDOS

El volumen del cuerpo de revolución engendrado al girar la curva f(x) alrededor del eje OX y limitado por x = a y x = b, viene dado por:
volumen

Ejemplos

1. Hallar el volumen engendrado por las superficies limitadas por las curvas y las rectas dadas al girar en torno al eje OX:
y = sen xx = 0x = π
solución
2. Calcular el volumen del cilindro engendrado por el rectángulo limitado por las rectas y = 2, x = 1 y x = 4, y el eje OX al girar alrededor de este eje.
volumen
3. Calcular el volumen de la esfera de radio r.
Partimos de la ecuación de la circunferencia x² + y² = r².
Girando un semicírculo en torno al eje de abscisas se obtiene una esfera.
esfera
integral
volumen de la esfera
4. Calcular el volumen engendrado por la rotación del área limitada por la parábola y2/8 = x y la recta x = 2, alrededor del eje OY.
Como gira alrededor del eje OY, aplicamos:
volumen
El volumen será la diferencia del engendrado por la recta y el engendrado por la parábola entre los extremos y = −4 e y = 4.
representación gráfica
Como la parábola es simétrica con respecto al eje OX, el volumen es igual a dos veces el volumen engendrado entre y = 0 e y = 4.
solución
5. Hallar el volumen del elipsoide engendrado por la elipse 16x2 + 25y2 = 400, al girar:
1 Alrededor de su eje mayor.
Alrededor de su eje menor.
representación gráfica
Como la elipse es simétrica al respecto de los dos ejes el volumen es el doble del engendrado por la porción de elipse del primer cuadrante en ambos casos.
ecuación
primer volumen
ecuación
segundo volumen
6. Calcular el volumen engendrado al girar alrededor del eje OX el recinto limitado por las gráficas de y = 2x −x2, y = −x + 2.
Puntos de intersección entre la parábola y la recta:
puntos de corte
representación gráfica
La parábola está por encima de la recta en el intervalo de integración.
integral definida
solución

LONGITUD DE ARCO


DEFINICION

Un arco de circunferencia es cada una de las partes en que una cuerda divide a la circunferencia.
dibujo
Se suele vincular a cada cuerda el menor arco que delimita.
dibujo
Un arco de circunferencia se denota con el símboloarcosobre las letras de los puntos extremos del arco.
Las letras se escriben en sentido antihorario, es decir, en contra de las agujas del reloj.

La longitud del arco, de la curva f(x), comprendido entre las abscisas x = a y x = b viene dado por la integral definida:
longitud

Ejemplo

Hallar la longitud del arco de curva función en el intervalo [0, 1].
derivada
longitud
cambio de variable
cambio
cambio
cambio
integral